Review, AC: Composable Asynchronous 10 for
Native Languages

Robert Hoff

October 20, 2011

1 Paper Summary

The paper describes a language variant, Asynchronous C (AC), that imple-
ments the C language with some new asynchronous constructs. The moti-
vation for developing the language is a new type of multi-kernel operating
system architecture based on message-passing. The new language constructs
take advantage of message-passing by making asynchronous programming
easier, because traditional asynchronous implementations use callback func-
tions that lead to complex and unmaintainable code. The performance mea-
surements show that asynchronous applications implemented with AC per-
form comparable to implementations using C with callbacks.

2 The Problem

Current trends in hardware design indicate growing number of cores, but
scaling is inhibited by contemporary shared-memory OS implementations.
Multi-kernel OS designs, instead, based on message-passing is suggested to
be a more scalable model. The problem in this paper, are the implications
this imposes on the language design.

3 The Solution

The language offers a standard C programming interface, in addition to pro-
viding asynchronous constructs. There are two slightly different implemen-
tation, either to rewrite the compiler, or use preprocessing macros based
on existing functions. The compiler based approach is faster because of
better stack management. Although AC is backward compatible with C,
either method makes it necessary to rewrite applications to take advantage
of message-passing performance potentials.



4 Evaluation

Performance is evaluated in two ways, against microbenchmarks (function
calls) and on larger applications. In all tests it is shown that AC performs
almost identically to C using asynchronous Al. The language supports a
standard library interface, which provides compatibility with existing appli-
cations, but also becomes the responsibility of the implementation to take
advantage of the new features.

5 My Opinion

It looks like the authors have achieved the new language implementations
without affecting performance. So I would conclude the language has been
enhanced, and that may be welcome. Although the paper is not conclusive
about how useful these additions really are.

6 Possible Questions

1. Why are performances compared against C# and F#, are these com-
parisons relevant? It seems to me that no matter what the results are
on these tests, it wouldn’t say much about the success of adapting a
different language.

2. I'm wondering if perhaps software engineering practises would be an
alternative to introducing a new language. Are the new language con-
structs really useful, what are the actual difficulties of rewriting appli-
cations using callback functions?



